Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Посетите Сервер по Физике Обратите внимание!
 
  Наука >> Физика >> Теоретическая физика >> Квантовая механика | Популярные статьи
 Написать комментарий  Добавить новое сообщение
 См. также

КнигиКолебания и волны: Характеристики различных колебательных систем (осцилляторов).

Популярные статьиЛабиринты фотонных кристаллов: сверхрешетка

Квантовые ямы, нити, точки. Что это такое?

В. Я. Демиховский (Нижегородский государственный университет им. Н.И. Лобачевского)
Опубликовано в Соросовском образовательном журнале, N 5, 1997 г.
Содержание

Резонансный туннельный диод

Квантовая механика предсказывает совершенно неожиданное поведение частиц, налетающих на потенциальные барьеры. Как обстоит дело в классической физике? Если полная энергия частицы меньше потенциальной энергии в области барьера, то эта частица отражается и затем движется в обратном направлении. В том случае, когда полная энергия превышает потенциальную, барьер будет преодолен. Квантовая частица ведет себя иначе: она преодолевает барьер подобно волне. Даже если полная энергия меньше потенциальной, есть вероятность преодолеть барьер. Это квантовое явление получило название "туннельный эффект". Оно используется в резонансном туннельном диоде.

Энергетическая схема этого прибора показана на рис. 5. Он состоит из двух барьеров, разделенных областью с малой потенциальной энергией. Область между барьерами - это как бы потенциальная яма, в которой есть один или несколько дискретных уровней. Характерная ширина барьеров и расстояние между ними составляют несколько нанометров. Области слева и справа от двойного барьера играют роль резервуаров электронов проводимости, к которым примыкают контакты. Электроны занимают здесь довольно узкий энергетический интервал. В приборе используется следующая особенность двойного барьера: его туннельная прозрачность имеет ярко выраженный резонансный характер. Поясним природу этого эффекта. Для этого предположим, что прозрачность каждого барьера мала. Это, однако, не означает, что одновременно будет мала и вероятность туннелирования через двойной барьер. Оказывается, что в том случае, когда энергия электронов, налетающих на барьеры, равна энергии дискретного уровня, туннельная прозрачность резко возрастает. Механизм резонансного туннелирования таков: электрон, проникший в область между барьерами, надолго задерживается там, в результате многократного отражения от левого и правого барьеров существенно возрастает вероятность туннелирования. Одновременно можно сказать, что при резонансе из-за интерференции волн во внутренней области гасится волна, отражающаяся от двойного барьера. Следовательно, волна, упавшая слева, полностью проходит направо.

Схема работы и вольт-амперная характеристика резонансного туннельного диода
Рис. 5.Схема работы и вольт-амперная характеристика резонансного туннельного диода: а - разность потенциалов равна нулю; б - на прибор подано резонансное напряжение, при котором ток максимальный; в - напряжение больше резонансного; г - вольт-амперная характеристика. Зеленым цветом показан энергетический уровень в области между двумя барьерами, красным - уровни электронов в области контактов

Посмотрим теперь, как работает резонансный диод. Ток, протекающий через двойной барьер, зависит от величины приложенного напряжения. Заметим, что потенциал в нашем приборе падает главным образом в области двойного барьера, так как области слева и справа от него обладают высокой проводимостью. Если приложенное напряжение мало и энергия электронов, налетающих на барьер слева, меньше энергии дискретного уровня, то прозрачность барьера и, следовательно, протекающий ток будут малы. Ток достигает максимального значения при таких напряжениях, когда энергия электронов равна энергии дискретного уровня (см. рис. 5, б ). При более высоких напряжениях энергия налетающих электронов станет больше энергии дискретного уровня и туннельная прозрачность барьера уменьшится (см. рис. 5, в). При этом ток также уменьшится. Вольт-амперная характеристика резонансного туннельного диода показана на рис. 5, г. Мы видим, что на вольт-амперной характеристике имеется максимум (если в области между барьерами не один, а несколько дискретных уровней, то и максимумов будет несколько). Справа от максимума кривая I(V) имеет падающий участок, где ток убывает с ростом напряжения. Можно еще сказать, что на вольт-амперной характеристике имеется участок отрицательного дифференциального сопротивления. Благодаря этому в электронных схемах резонансный диод может использоваться не только как выпрямитель, но и выполнять самые разнообразные функции. Если к центральной области резонансного диода подвести контакт, через который можно управлять положением дискретного уровня, получится новый прибор - транзистор. Из таких транзисторов, по-видимому, и будут строиться интегральные схемы новых поколений.

Резонансный туннельный диод - это первое реальное устройство с квантовой ямой и барьерами. Он был создан Лео Эсаки и Чангом в 1974 году. Идея прибора была предложена раньше. Это сделал Л. Иогансен в 1963 году.

Лазеры на квантовых ямах

Наиболее успешно квантовые структуры используются для создания лазеров [Кастнер М.А., 1993]. Уже сегодня эффективные лазерные устройства на квантовых ямах дошли до рынка и применяются в волоконно-оптических линиях связи. Посмотрим, как устроены и работают эти приборы. Во-первых, напомним, что для работы любого лазера необходимо создать инверсную населенность энергетических уровней. Другими словами, на более высоком уровне должно находиться больше электронов, чем на низком, в то время как в состоянии теплового равновесия ситуация обратная. Во-вторых, каждому лазеру необходим оптический резонатор или система зеркал, которая запирает электромагнитное излучение в рабочем объеме.

Для того чтобы квантовую яму превратить в лазер, нужно ее подсоединить к двум контактам, через которые электроны могут непрерывно поступать в рабочую область. Пусть через один контакт электроны поступают в зону проводимости. Далее, совершая скачки из зоны проводимости в валентную зону, они будут излучать кванты, то есть порции электромагнитного излучения (рис. 6). Затем через валентную зону носители тока должны уходить на другой контакт. В квантовой механике доказывается, что частота излучения w определяется условием

$\hbar w = {E}_{g} + {{E}_{1}}^{e} + {{E}_{2}}^{u}$, (5)

где ${{E}_{1}}^{e}$ и ${{E}_{2}}^{u}$ - энергии первых энергетических уровней соответственно в зоне проводимости и валентной зоне, Eg - ширина запрещенной зоны.

Энергетическая схема лазера на квантовой яме
Рис. 6.Энергетическая схема лазера на квантовой яме

Электромагнитное излучение, генерируемое лазером, нужно сконцентрировать в центральной, рабочей области прибора. Для этого показатель преломления внутренних слоев должен быть больше, чем внешних. Можно еще сказать, что внутренняя область играет роль волновода. На границах этого волновода нанесены зеркала, которые образуют резонатор.

Лазеры на квантовых ямах обладают преимуществами по сравнению с обычными полупроводниковыми лазерами. Очень важно, что эти приборы можно перестраивать, управляя параметрами энергетического спектра. Так, при уменьшении размеров ямы минимальные энергии электронов ${{E}_{1}}^{e}$ в зоне проводимости и ${{E}_{2}}^{u}$ в валентной зоне увеличиваются и, согласно формулам (4) и (5), частота, генерируемая лазером, возрастает. Подбирая толщину квантовой ямы, можно добиться, чтобы затухание волны в оптической линии связи, в которую поступает излучение, было минимальным. Кроме того, в двумерном электронном газе легче создать инверсную населенность. Поэтому лазеры на квантовых структурах очень экономны, они питаются меньшим током, нежели другие полупроводниковые лазеры, и дают больше света на единицу потребляемой энергии - до 60% электрической мощности преобразуется в свет. В последнее время во многих лабораториях мира ведутся работы по созданию лазеров на квантовых точках.

Будущее квантовых наноструктур

Прошло более 30 лет с тех пор, как началось изучение квантовых эффектов в полупроводниковых структурах. Были сделаны замечательные открытия в области физики низкоразмерного электронного газа, достигнуты поразительные успехи в технологии, построены новые электронные и оптоэлектронные приборы. И сегодня в физических лабораториях активно продолжаются работы, направленные на создание и исследование новых квантовых структур и приборов, которые станут элементами больших интегральных схем, способных с высокой скоростью перерабатывать и хранить огромные объемы информации. Возможно, что уже через несколько лет наступит эра квантовой полупроводниковой электроники.

Назад | Вперед

Написать комментарий
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования