Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Посетите Сервер по Физике Обратите внимание!
 
  Наука >> Физика >> Основы технологии | Популярные статьи
 Написать комментарий  Добавить новое сообщение
 См. также

Популярные статьиТермояд: сквозь тернии к звездам. Часть 2

Популярные статьиТермояд: сквозь тернии к звездам. Часть 2: (1)

ФотографииВетер как альтернативный источник энергии

Термояд: сквозь тернии к звездам (Часть первая)

Р. Сворень, специальный корреспондент журнала "Наука и жизнь".
Опубликовано в журнале "Наука и жизнь", N 8, 2001 г.
Содержание

Невидимые миру слезы

Крылатое выражение "невидимые миру слезы" вполне можно отнести к многолетним попыткам использовать водородный синтез в большой энергетике. Широкая публика часто слышала о том, что в этой области проводятся интересные исследования, строятся экспериментальные установки, что наука весело и успешно приближается к намеченной цели. Но мало кто знает, с какими сложными, порой, казалось, неразрешимыми проблемами сталкивались физики и инженеры, как много появлялось на их пути совершенно неожиданных препятствий, как дорого приходилось платить чуть ли ни за каждое продвижение вперед. Достигнутый сегодня рубеж - технический проект термоядерного реактора - не только итог многолетних усилий многих тысяч профессионалов высочайшего уровня. Это на самом деле еще и напоминание о мужестве ученых и инженеров, умеющих держать удар и разумно рисковать, преодолевать, казалось бы, непреодолимое и, сделав ставку на математический прогноз, начинать работы стоимостью в миллионы долларов, взяв на себя ответственность за результат.
Невозможно рассказать обо всех задачах, которые решались и еще только решаются на пути к энергетическому реактору ядерного синтеза. Но о некоторых из них полезно знать даже человеку, не имеющему возможности вникать в детали, - это поможет почувствовать масштабы проблемы.
Получать энергию от ядерного синтеза научились почти полвека назад, но лишь в виде неуправляемой лавины - в водородной бомбе. А энергетике нужен не взрыв, а ровное "горение", непрерывное выделение энергии. Иначе говоря, энергетике нужен управляемый термоядерный синтез, сокращенно УТС.
Настал, видимо, момент пояснить значение приставки "термо" в слове "термояд", которая появилась вместе с названием самого проекта ИТЭР. Чтобы получить ядро гелия из двух ядер водорода, нужно с огромной силой столкнуть эти ядра. Тогда они смогут преодолеть взаимное электрическое отталкивание (не забудьте: ядро водорода - это протон, частица с положительным электрическим зарядом) и сблизиться до чрезвычайно малого расстояния 10-13 см, когда уже начинают действовать ядерные силы.
Процесс синтеза обычно осуществляют в газообразном водороде, нагретом до очень высокой температуры: чем выше температура, тем больше средняя энергия хаотически движущихся частиц газа. Правильнее, пожалуй, сказать иначе: температура - это мера интенсивности движения частиц, мера их скорости и, следовательно, их кинетической энергии. Чем выше температура, тем больше ядер имеют энергию, позволяющую преодолеть электрическое расталкивание и сблизиться для последующего слияния в ядро гелия.
Для эффективного ядерного синтеза нужно нагреть водородный газ до температуры в сотни миллионов градусов. Для получения большой энергии при синтезе ядер гелия используют изотопы водорода - тяжелый водород дейтерий и сверхтяжелый - тритий. Однако для упрощения мы будем там, где это возможно, называть эти изотопы просто водородом. И еще одно терминологическое замечание - при высокой температуре атомы сбрасывают свои электронные оболочки и вместо водородного газа, состоящего из нейтральных атомов, образуется плазма - в целом квазинейтральная смесь свободных атомных ядер и свободных электронов.
Итак, для ядерного синтеза водородный газ нужно очень сильно нагреть, попутно превратив его в водородную, а точнее дейтерий-тритиевую , плазму. С ростом температуры возрастает вероятность слияния водородных ядер, а значит, и эффективность процесса - выход высвободившейся энергии. Здесь, правда, есть немало тонкостей. Температуру, в частности, можно снизить, не потеряв эффективности, если увеличить давление водородного газа, но при этом возникает ряд новых проблем. В лабораторных установках для термоядерного синтеза плазма имеет температуру 50-100 миллионов градусов, а в ИТЕРе она будет поддерживаться на уровне 150-200 миллионов. В недрах Солнца ядерный синтез идет при температуре 20 миллионов градусов, но там водород очень сильно сжат гравитационными силами - огромной солнечной массой.

(Окончание в следующем номере.)


Примечание. Сколько топлива на Земле

Энергию, столь необходимую человечеству, сегодня получают в основном за счет сжигания углеродного топлива (1). Часть энергии (в ряде стран - немалую) дают атомные электростанции, работающие за счет деления радиоактивного изотопа урана 235U, количество которого составляет только 0,71% от общей массы природного урана. Практически все остальное - "негорючий" изотоп 238U. Однако делящиеся изотопы урана и плутония (238Pu) нетрудно получить искусственно, облучая потоком нейтронов уран 238U и торий 232Th (2):
238U + n $\to$ 239Pu + 2e- +$\gamma$ + 2$\nu$~ ;
232Th + n $\to$ 233U + e- + $\gamma$ +$\nu$~ .
Наилучшим образом эти реакции проходят в ныне действующих реакторах-размножителях на быстрых нейтронах (бридерах), а в будущем, если потребуется, их можно будет проводить в бланкетах термоядерных реакторов (3).

Из таблицы видно, что запасы сырья для ядерной энергии синтеза (лития, из которого получают тритий) примерно в 30 раз превышают запасы урана и тория, пригодных для получения энергии деления. К тому же на тритии будут работать термоядерные реакторы только первого поколения. Уже сейчас идет работа по созданию реактора на безнейтронных реакциях синтеза, например на 3He (3He + 3He \to 4He + 2p +12,8 Мэв) и других легких ядрах. А все органическое топливо Земли - нефть, газ и уголь - может дать только одну стомиллионную часть этой энергии. При современной мощности мировой энергетики запасов органического топлива, в первую очередь угля, хватит лет на двести, а сырья для ядерной энергетики - на тысячелетия.

Так откуда берутся тритий и дейтерий? Изотоп водорода, содержащий два "лишних" нейтрона - тритий 3H, или T, имеет период полураспада 12,26 года. Количество природного трития на Земле не превышает четырех килограммов. Но поскольку на его реакции с дейтерием основано действие термоядерного оружия, современные запасы трития исчисляются десятками килограммов.

В природе тритий образуется при бомбардировке нейтронами космического излучения атомов азота воздуха:
147 N + n = 31T + 3 42 He.

А в реакторах деления тритий получают за счет взаимодействия с нейтронами ядер лития:

63 Li + n = 31 T + 42 He.
Эта реакция проходит гораздо интенсивнее, чем природная, поэтому и количество трития удается поддерживать на должном уровне.
Дейтерий 2H, или D, стабилен, в природе имеется, хотя и в очень малых количествах - 0,015% общего количества водорода. Обыкновенная вода рек, озер, морей и океанов хранит его в молекулах D2O - "тяжелой воды". Масса дейтерия в два раза больше массы водорода, поэтому скорости химических реакций между веществами, их содержащими, могут отличаться раз в 5 - 10. Эту особенность и используют для выделения дейтерия, применяя многоступенчатый электролиз воды, "выпаривание" жидкого водорода и другие методы.

Назад


Написать комментарий
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования