Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Посетите Сервер по Физике Обратите внимание!
 
  Наука >> Физика >> Специальные разделы >> Синергетика и Хаос | Популярные статьи
 Написать комментарий  Добавить новое сообщение
 См. также

Популярные статьиВзаимосвязь астероидов, комет и метеорных потоков: Введение

Научные статьиФизика элементарных частиц и t-кварк: 397

Популярные статьиСистемы координат в астрономии: Введение

Популярные заметкиПотомков "детей лейтенанта Шмидта" нельзя оставлять без присмотра

Научные статьиПринцип динамического баланса и его реализация в учебном процессе

Обзорные статьиО лженауке, ее последствиях и об ошибках в науке

Популярные статьиЧто происходит в центре Галактики?

Популярные статьиПроблемы современной астрофизики: Введение

Популярные статьиС.Г. Инге-Вечтомов. Трансляция как способ существования живых систем, или в чем смысл "бессмысленных"

Популярные статьиОтветы на все вопросы

Научные статьиХимические основы возникновения Жизни

Научные статьиПоследний из могикан: Отто Людвигович Струве

Научные статьиРадиоактивные газовые зонды в дифузионно-структурном анализе твердых тел и твердофазных процессов: (1)

НовостиРазрыв Вселенной

Научные статьиПсихосоматическая проблема

Введение в физику открытых систем

Ю.Л. Климонтович (МГУ им. М.В.Ломоносова)
Опубликовано в Соросовском образовательном журнале, N 8, 1996 г.
Содержание

Управляющие параметры

Итак, термином "хаос" характеризуют самые различные виды сложных движений. Во многих случаях, как мы видели, хаотическое движение очень трудно отличить от упорядоченного, но очень сложного движения. По этой причине возникает необходимость в критериях относительной степени упорядоченности или хаотичности различных движений в открытых системах. При этом оказывается очень важным выбор управляющих параметров, при изменении которых и происходят неравновесные фазовые переходы.
Выбор управляющих параметров представляет во многих случаях самостоятельную задачу. При этом возможны, естественно, ошибки. В связи с этим критерии степени упорядоченности должны содержать и возможность контроля правильности сделанного выбора управляющих параметров.
Приведем примеры. В лазерах управление может осуществляться путем изменения уровня накачки, то есть вклада энергии, за счет которой создается инверсная заселенность. В классических генераторах накачке соответствует так называемый параметр обратной связи.
При конвективном движении управляющим параметром служит градиент температуры. При переходе от ламинарного течения к турбулентному управление может осуществляться изменением разности давления на концах трубы.
В медицине роль управляющих параметров могут выполнять лекарства. Наблюдение за состоянием больного позволяет контролировать правильность выбора лекарства. Роль управляющего параметра играет и скальпель хирурга. Управляющим параметром может служить и время выздоровления - время, в течение которого организм без внешнего вмешательства возвращается к норме.

Динамическое и статистическое описание сложных движений

Во введении мы отметили, сколь драматичным было соперничество двух теорий статистического и динамического описания неравновесных процессов. Хотя в настоящее время "накал страстей" не столь велик, эти два направления и по сей день развиваются в значительной мере независимо. Необходимость их синтеза особенно остро ощущается в последние годы, в первую очередь в связи с развитием физики открытых систем.
В чем же причина столь долгого противостояния этих двух фундаментальных научных направлений? Является ли такое независимое развитие оправданным?
Ответ на второй вопрос очевиден: их синтез необходим. Первый же вопрос не столь простой. Ниже мы попытаемся дать на него ответ.
Выделим два класса систем: динамические и стохастические (или статистические). Такое разделение является условным, так как во многих случаях трудно провести различие между динамическим и физическим хаосом. Его, однако, можно провести на основе численного эксперимента. Это оправдано, поскольку практически все представляющие интерес математические модели не имеют аналитических решений.
В основу классификации положим свойство воспроизводимости движения по заданным начальным условиям. Тогда, по определению, к динамическим относятся воспроизводимые, а к стохастическим - не воспроизводимые по начальным данным движения в нелинейных диссипативных системах.
Естественно, что в реальном эксперименте, когда наличие шума неизбежно, все процессы в той или иной мере являются стохастическими. При численном же эксперименте возможно точное (при заданной разрядности компьютера) повторение начальных условий. Воспроизводимость решения зависит лишь от структуры математической модели. Если уравнения не содержат случайных источников, то процесс воспроизводим и, следовательно, движение является динамическим, хотя оно и может быть при этом очень сложным и практически непредсказуемым. В противном случае (при наличии тех или иных источников), когда движение не воспроизводимо по начальным данным, мы имеем дело, следовательно, со стохастическим движением.
При исследовании стохастических процессов путем численного эксперимента существенно, что источники случайных чисел в компьютерах построены по определенному алгоритму и являются поэтому фактически детерминированными. Они могут рассматриваться как случайные, если характерные времена повторения для них значительно больше характерных времен релаксации динамической системы.
Основной особенностью динамического хаоса служит динамическая неустойчивость движения. Она выражается в сильной (экспоненциальной) расходимости близких в начальный момент траекторий. Следствием ее является перемешивание траекторий, наличие которого и позволяет перейти от полного описания на основе уравнений движения всех частиц к более простым уравнениям для функций, сглаженных по объему перемешивания. Тем самым радикально меняется способ описания. Система частиц заменяется сплошной средой.
Именно так, не делая на этом акцента, поступил Больцман, когда ввел свое знаменитое кинетическое уравнение для плотности распределения частиц в пространстве шести измерений - в пространстве координат и компонент скорости. Таким образом, функция распределения, для которой Больцман записал свое уравнение, является макроскопической характеристикой.
В результате такого радикального изменения меняется и временная симметрия уравнений. Именно система обратимых уравнений механики для системы частиц заменяется необратимым уравнением для макроскопической плотности сплошной среды - кинетическим уравнением Больцмана. Как следствие этого возникают новые характеристики, которых нет в механике частиц. Важнейшей из них является энтропия.
После классических работ А. Пуанкаре можно выделить два этапа развития динамической теории диссипативных систем. Первый связан с возникновением радиотехники, с необходимостью развития для этих целей теории автоколебаний. Замечательные физические и математические результаты в этой области принадлежат Ван дер Полю, Л.И. Мандельштаму, А.А. Андронову, А.А. Витту, Л.С. Понтрягину, Н.М. Крылову, Н.Н. Боголюбову и многим другим. Особое место в установлении связи динамического и статистического описания сложных движений принадлежит очень рано ушедшему из жизни Николаю Сергеевичу Крылову.
Второй этап развития динамической теории стимулировался проблемами теории турбулентности и трудностями решения задачи о долгосрочном прогнозе погоды. Фактическим его началом явилась работа Эдварда Лоренца. Значение этой работы было понято, однако, значительно позднее, после появления статьи математиков Д. Рюэля и Ф. Такенса, опубликованной в 1971 году. В ней был введен новый математический образ сложного движения в нелинейных диссипативных динамических системах - странный аттрактор.
Слово "странный" подчеркивает два свойства аттрактора. Это, во-первых, необычность его геометрической структуры. Она не может быть представлена в виде кривых или плоскостей, то есть геометрических элементов целой размерности. Размерность странного аттрактора является дробной или, как принято говорить, фрактальной.
Во-вторых, странный аттрактор - это притягивающая область для траекторий из окрестных областей. При этом все траектории внутри странного аттрактора динамически неустойчивы.
Странный аттрактор существует только в нелинейных диссипативных системах с числом переменных больше двух. Так, уравнения Лоренца представляют систему трех нелинейных диссипативных уравнений. Напомним, что автоколебания, например в генераторе Ван дер Поля, описываются системой двух уравнений. В этом случае имеются лишь простые аттракторы: состояние покоя (точка) и предельный цикл (замкнутая кривая). Для возможности существования странного аттрактора необходимо усложнение генератора Ван дер Поля. Оно может быть осуществлено различными способами.
Один из них принадлежит В.С. Анищенко и В.В. Астахову. Они ввели дополнительную обратную связь с использованием полупериодного детектора. Такой генератор описывается системой трех дифференциальных уравнений, которые содержат два управляющих параметра: параметр обратной связи и характерный временной параметр, определяющий степень запаздывания.
Результаты физического и численного экспериментов показали следующее. При фиксированном времени запаздывания по мере увеличения параметра обратной связи в генераторе возникает последовательность бифуркаций удвоения периода колебаний - бифуркаций Фейгенбаума. Так происходит до некоторого критического значения параметра обратной связи. При значениях больше критического возникает странный аттрактор со сложным чередованием областей динамического хаоса и порядка. При этом в широкой области значений параметров наблюдалась достаточная близость результатов физического и численного анализа. Это соответствие нарушается, однако, вблизи критических точек - точек бифуркации, где динамическая математическая модель генератора оказывается недостаточной.
Подведем некоторые итоги. Мы видели, что в сравнительно простых динамических системах существуют чрезвычайно сложные движения, которые воспринимаются как хаотические. Это и дало основание для введения новых понятий: странный аттрактор и динамический (или детерминированный) хаос.
Слово "хаос" является, как правило, негативным как в физике и биологии, так, например, и в экономике. Это понятие, однако, как уже отмечалось выше, очень многогранно. Так, жизнь невозможна как при полном хаосе, так и при полном порядке. Для нормального организма нужна некоторая норма степени хаотичности. Для ее определения и поддержания необходимы количественные оценки относительной степени хаотичности.
Покажем, что динамическая неустойчивость может играть в физике открытых систем и конструктивную роль. Начнем с иллюстративного примера из социологии. Представим себе, что происходит лекция для учителей, которые съехались из различных областей России. Предположим, что лекция подошла к концу, исчерпаны все вопросы. Примем это состояние слушателей за начальное. Рассмотрим два возможных варианта их дальнейшего движения. 1. Слушатели после окончания лекции перемещаются вместе, не удаляясь друг от друга на значительные расстояния. 2. Слушатели разъезжаются по местам работы и жительства - "разбегаются экспоненциально". Иными словами, движение слушателей становится "динамически неустойчивым". Какой из этих двух вариантов движения в большей мере способствует использованию полученных во время лекции знаний?
Первый вариант полезен в определенной мере, так как позволяет продолжить обсуждение затронутых в лекции вопросов. Несомненно вместе с тем, что лишь второй вариант движения, когда имеет место "динамическая неустойчивость" и имеет место "перемешивание" траекторий слушателей по территории России, позволяет донести полученные знания до школьников.
Этот пример демонстрирует, что динамическая неустойчивость движения и перемешивание могут и не вести к хаосу, а играть позитивную и конструктивную роль.
Вернемся после этого иллюстративного примера к физической системе. Рассмотрим разреженный газ. Это означает, что объем атома или молекулы газа гораздо меньше среднего объема, который приходится на одну частицу. Представим атомы в виде абсолютно упругих шариков. Такая модель во многих случаях оказывается вполне оправданной.
С точки зрения механики, для описания эволюции газа надо использовать систему уравнений для всех его атомов. Такая задача непосильна даже для самых мощных компьютеров. В чем же выход? Как же найти способ описания неравновесных процессов в газе - в системе, состоящей из огромного числа частиц? Покажем, что решение такой задачи возможно и именно благодаря конструктивной роли динамической неустойчивости движения атомов газа.
Благодаря динамической неустойчивости движения - экспоненциальному разбеганию траекторий, происходит перемешивание траекторий в фазовом пространстве. Это открывает возможность ввести понятие "сплошная среда" и использовать вместо микроскопических уравнений движения частиц газа приближенные уравнения для макроскопических функций. Атомарная структура системы принимается во внимание при определении понятия "точка сплошной среды." Для этого необходимо конкретное определение физически бесконечно малых масштабов времени и длины и соответствующего физически бесконечно малого объема, который и играет роль объема "точки" сплошной среды. Такое определение должно быть согласовано с определением минимальной области перемешивания и минимальным временем развития динамической неустойчивости.

Литература

  • Пригожин И. От существующего к возникающему. М.: Наука, 1985.
  • Хакен Г. Синергетика. М: Мир, 1980.
  • Климонтович Ю.Л. Статистическая теория открытых систем. М.: Янус, 1995.
  • Климонтович Ю.Л. Физика открытых систем // Успехи физических наук. 1966. Т. 168.
  • Самоорганизация в науке / Под ред. И.Г. Акчурина и В.И. Аршинова. М.: Арго, 1994.
  • Назад


    Написать комментарий
     Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования