Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Посмотрите новые поступления ... Обратите внимание!
 
  Наука >> Биология >> Онкология | Дипломные работы
 Написать комментарий  Добавить новое сообщение
М.В. Спиваков. Онкогены и опухолевые супрессоры в регуляции G1- и G2-чекпойнтов клеточного цикла, контролирующих повреждения ДНК

Курсовая работа студента 4-го курса кафедры вирусологии Биологического факультета МГУ. Москва, 2001
Авторские права сохранены. Любое копирование данного текста и/или его фрагментов без разрешения автора запрещено и преследуется в соответствии с действующим законодательством РФ.

Содержание   В начало...
 
 


Литература

1. Копнин БП. Мишени действия онкогенов и опухолевых супрессоров: ключ к пониманию базовых механизмов канцрогенеза. 2000. Биохимия, 65(1):5-33.

2. Чумаков ПМ. Функция гена p53: выбор между жизнью и смертью. 2000. Биохимия, 65(1):34-47.

3. Саблина АА. Роль супрессора р53 и онкогенов Ras-Raf-MAPK сигнальных путей в регуляции точек проверки клеточного цикла. 2000. Дисс. канд. биол. наук.

4. Koepp DM, Harper JW, and Elledge SJ. How the сyclin became a cyclin: regulated proteolysis in the cell cycle. 1999. Cell, 97:431-434.

5. Yun J, Chae HD, Choy HE, Chung J, Yoo HS, Han MH, Shin DY .p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. 1999. J Biol Chem, 274(42):29677-29682.

6. Tommasi S, Pfeifer GP. In vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. 1995. Mol Cell Biol, 15(12): 6901-6913.

7. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, and Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. 1998. Nature, 391:597-601.

8. Pines J and Rieder CL. Re-staging mitosis: a contemporary view of mitotic progression. 2000. Nature Cell Biology, 3: E3-E6.

9. Esashi F, Yanagida M. Cdc2 phosphorylation of Crb2 is required for reestablishing cell cycle progression after the damage checkpoint. 1999. Mol Cell, 4(2):167-174.

10. Wilson S, Warr N, Taylor DL, Watts FZ. The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance. 1999. Nucleic Acids Res, 27(13):2655-2661.

11. O'Connor DS, Grossman D, Plescia J, Li F, Zhang H, Villa A, Tognin S, Marchisio PC, and Altieri DC. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. 2000. Proc Natl Acad Sci USA, 97(24):13103-13107.

12. Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, Villa A., Marchisio PC, Altieri DC. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. 1999. Nature Cel Biology, 1(8): 461-466.

13. Lin CY, Madsen ML, Yarm FR, Jang YJ, Liu X, and Erikson RL. Peripheral Golgi protein GRASP65 is a target of mitotic polo-like kinase (Plk) and Cdc2. 2000. Proc Natl Acad Sci USA, 97(23):12589-12594.

14. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. 1996. Science, 274: 1664-1672

15. Naito T, Matsuura A and Ishikawa F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. 1998. Nature Genet, 20:203-206.

16. Zhou BBS and Elledge SJ. The DNA damage response: putting checkpoints in perspective. 2000. Nature, 408:433-439.

17. O'Connel MJ, Walworth NC, and Carr AM. The G2-phase DNA-damage checkpoint. 2000. Trends Cell Biol, 10:296-303.

18. Thelen MP et al. A sliding clamp model for the Rad1 family of cell cycle checkpoint proteins. 1999. Cell, 19:769-770.

19. Volkmer E and Karnitz LM. Human Homologs of Schizosaccharomyces pombe Rad1, Hus1, and Rad9 form a DNA damage-responsive protein complex. 1999. J Biol Chem, 274(2): 567-570.

20. Kostrub CF, Knudsen K, Subramani S, and Enoch T. Hus1p, a conserved fission yeast checkpoint protein, interacts with Rad1p and is phosphorylated in response to DNA damage. 1998. EMBO J, 17: 2055-2066.

21. Bessho T and Sancar A. Human DNA damage checkpoint protein hRAD9 is a 3' to 5' exonuclease. 2000. J Biol Chem, 275(11): 7451-7454.

22. Smith GCM, and Jackson SP. The DNA-dependent protein kinase. 1999. Genes Dev, 13(8): 397-402.

23. Rauen M, Burtelow MA, Dufault VM, Karnitz LM. The human checkpoint protein hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRad9. 2000. J Biol Chem, 275(38):29767-29771.

24. Brown EJ and Baltimore D. ATR disruption leads to chromosome fragmentation and early embrionic lethality. 2000. Genes Dev, 14:397-402.

25. Banin S et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. 1998. Science, 281:1674-1677.

26. Caman CE et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. 1998. Science, 281:1677-1679.

27. Sun Z, Hsiao J, Fay DS, and Stern DF Rad53 FHA domain associated with phosphorilated Rad9 in the DNA-damage checkpoint. 1998. Science, 281:272-274.

28. Haruki N, Saito H, Tatematsu Y, Konishi H, Harano T, Masuda A, Osada H, Fujii Y, Takahashi T. Histological type-selective, tumor-predominant expression of a novel CHK1 isoform and infrequent in vivo somatic CHK2 mutation in small cell lung cancer. 2000. Cancer Res, 60(17):4689-4692.

29. Hernandez S, Hernandez L, Bea S, Pinyol M, Nayach I, Bellosillo B, Nadal A, Ferrer A, Fernandez PL, Montserrat E, Cardesa A, Campo E. Cdc25a and the splicing variant cdc25b2, but not cdc25b1, -b3 or -c, are over-expressed in aggressive human non-Hodgkin's lymphomas. 2000. Int J Cancer, 89(2):148-152.

30. Hirao A et al. DNA-damage induced phosphorylation of p53 by the checkpoint kinase Chk2. 2000. Science, 287:1824-1827.

31. Bell DW et al. Heterozigous germ line hCHK2 mutations in Li-Fraumeni syndrome. 1999. Science, 286:2528-2531.

32. Lee JS, Collins KM, Brown AL, Lee CH, Chung JH. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. 2000. Nature, 404: 201-204.

33. Blasina A, de Weyer IV, Laus MC, Luyten WH, Parker AE, McGowan CH. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. 1999. Curr Biol, 9(1):1-10.

34. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, and Elledge SJ. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. 2000. Genes Dev, 14(12): 1448-1459.

35. Shieh SY, Ahn J, Tamai K, Taya Y, and Prives C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. 2000. Genes Dev., 14(3): 289-300.

36. Gottifredi V, Karni-Schmidt O, Shieh SY, and Prives C. p53 Down-Regulates CHK1 through p21 and the Retinoblastoma protein. 2001. Mol Cell Biol, 21(4): 1066-1076.

37. Raleigh JM, O'Connell MJ. The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. 2000. J Cell Sci, 113:1727-1736.

38. Miki, Y., et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. 1994. Science, 266:66-71.

39. Shang Li, et al. Fucntional of BRCA1 and ataxia telangiectasia gene product in DNA damage response. 2000. Nature, 406:210-215.

40. Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. 2000. Genes Dev, 14(23):2989-3002.

41. MacLachan TK and El-Deiry WS. Pointing (zinc) fingers at BRCA1 targets. 2000. Nature Medicine, 6(12):1318-1319.

42. MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH, and El-Deiry WS. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. 2000. J Biol Chem, 275(4):2777-2785.

43. Yang Q, Manicone A, Coursen JD, Linke SP, Nagashima M, Forgues M, Wang XW. Identification of a functional domain in a GADD45-mediated G2/M checkpoint. 2000. J Biol Chem, 275(47):36892-36898.

44. MacLachlan TK, Dash BC, Dicker DT, El-Deiry WS. Repression of BRCA1 through a feedback loop involving p53. 2000. J Biol Chem, 275(41):31869-31875.

45. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. 1999. Oncogene, 18(53):7644-7655.

46. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. 1997. Cell, 91(3):325-334.

47. Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. 1997. Annu Rev Cell Dev Biol, 13:261-291.

48. Flatt PM, Tang LJ, Scatena CD, Szak ST, and Pietenpol JA. p53 regulation of G2 checkpoint is retinoblastoma protein dependent. 2000. Mol Cell Biol, 20(12):4210-4223.

49. Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, and Fornace Jr AJ. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. 1999. Oncogene, 18:2892-2900.

50. Agami R and Bernards R. Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to dna damage. 2000. Cell, 102:55-56.

51. Gopalkrishnan RV, Lam EWF, and Kedinger C. The p53 tumor suppressor inhibits transcription of the TATA-less mouse DP1 promoter. 1998. J Biol Chem, 273:10972-10978.

52. Saha P, Eichbaum Q, Silberman ED, Mayer BJ, and Dutta A. p21/cip1 and cdc25a: competition between an inhibitor and a activator of cyclin-dependent kinases. 1997. Mol Cell Biol, 17:4338-4345.

53. Luo Y, Hurwitz J, and Massague J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. 1995. Nature, 375:159-161.

54. Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, and Fornace AJJ. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. 1994. Science, 266:1376-1380.

55. Kearsey JM, Shivji MK, Hall PA, and Wood RD. Does the p53 up-regulated Gadd45 protein have a role in excision repair? 1995. Science, 270:1004-1005.

56. Schneider E, Montenarh M, and Wagner P. Regulation of CAK kinase activity by p53. 1998. Oncogene, 17:2733-2741.

57. Aguda BD. A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system. 1999. Proc Natl Acad Sci USA, 96:11352-11357.

58. Smits VA, Klompmaker R, Vallenius T, Rijksen G, Makela TP, Medema RH. p21 inhibits thr161 phosphorylation of cdc2 to enforce the G2 DNA damage checkpoint. 2000. J Biol Chem, 275(39):30638-30643.

59. Chan TA, Hermeking H, Lengauer C, Kinzler KW and Vogelstein B. 14-3-3? is required to prevent mitotic catastrophe after DNA damage. 1999. Nature, 401:616-420.

60. Yun J, Chae HD, Choy HE, Chung J, Yoo HS, Han MH, and Shin DY. p53 Negatively Regulates cdc2 Transcription via the CAAT-binding NF-Y Transcription Factor. 1999. J Biol Chem, 274(42): 29677-29682.

61. Manni I, Mazzaro G, Gurtner A, Mantovani R, Haugwitz U, Krause K, Engeland K, Sacchi A, Soddu S, Piaggio G. NF-Y mediates the transcriptional inhibition of the cyclin B1, cyclin B2, and CDC25C promoters upon induced G2 arrest. 2001. J Biol Chem, 276(8):5570-5576.

62. Fattaey A, Booher RN. Myt1: a Wee1-type kinase that phosphorylates Cdc2 on residue Thr14. 1997. Prog Cell Cycle Res, 3:233-40

63. Piwnica-Worms H. Cell cycle: fools rush in. 1999. Nature, 401, 535 - 536.

64. Kumagai A, Yakowec PS, and Dunphy WG. 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. 1998. Mol Biol Cell, 9(2):345-354.

65. Poon RY, Chau MS, Yamashita K, Hunter T. The role of Cdc2 feedback loop control in the DNA damage checkpoint in mammalian cells. 1997. Cancer Res, 57(22):5168-5178.

66. Michael WM, Newport J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. 1998. Science, 282:1886-1889.

67. Wang Y, Jacobs C, Hook KE, Duan H, Booher RN, Sun Y. Binding of 14-3-3beta to the carboxyl terminus of Wee1 increases Wee1 stability, kinase activity, and G2-M cell population. 2000. Cell Growth Differ, 11(4):211-219.

68. Karlsson С, Katich S, Hagting A, Hoffmann A, and Pines J. Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. 1999. J Cell Biol, 146(3):573-584.

69. Woo ES, Rice RL, Lazo JS. Cell cycle dependent subcellular distribution of Cdc25B subtypes. 1999. Oncogene, 18(17):2770-2776.

70. Taylor SJ, Shalloway D. Src and the control of cell division. 1996. Bioessays, 18(1):9-11.

71. Furuno N, den Elzen N, Pines J. Human cyclin A is required for mitosis until mid prophase. 1999. J Cell Biol, 147(2):295-306.

72. Thompson LJ, Fields AP. BetaII protein kinase C is required for the G2/M transition of the cell cycle. 1996. J Biol Chem, 271:15045-15053.

73. Murray NR, Baumgardner GP, Burns DJ, and Fields AP. Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. Evidence that beta II protein kinase C is required for proliferation. 1993. J Biol Chem 268:15847-15853.

74. Gamard CJ, Blobe GC, Hannun YA, and Obeid LM. Specific role for protein kinase C beta in cell differentiation. 1994. Cell Growth Differ 5:405-409.

75. Cocco L, Capitani S, Maraldi NM, Mazotti G, Barnabei O, Gilmour RS, Manzoli FA. Inositol lipid cycle and automonous nuclear signalling. 1996. Adv Enzyme Regul, 36:101-114.

76. D'Santos CS, Clarke JS, Irvin RF, and Divecha N. Nuclei contain two differentionally regulated pools of diacylglycerol. 1999. Curr Biol, 9:437-440.

77. Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, Herbour JW, Dean DC. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. 2000. Cell, 101(1):79-89.

78. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J. Rapid destruction of human Cdc25A in response to DNA damage. 2000. Science, 288:1425-1429.

79. Charles J. Sherr. The Pezcoller lecture: cancer cell cycles revisited. 2000. Cancer Res, 60:3689-3695.

80. Bashir T, Horlein R, Rommeleare J, and Willwand K. Cyclin A activates the DNA polymerase ?-dependent elongation machinery in vitro: a parvovirus DNA replication model. 2000. Proc Natl Acad Sci USA, 97(10):5522-5527.

81. Agapova LS, Ivanov AV, Sablina AA, Kopnin PB, Sokova OI, Chumakov PM, and Kopnin BP. p53-dependent effects of RAS oncogene on chromosome stability and cell cycle checkpoints. 1999. Oncogene, 18:3135-3142.

82. Berns K, Martins C, Dannenberg JH, Berns A, te Riele H, Bernards R. p27kip1-independent cell cycle regulation by MYC. 2000. Oncogene, 19(42):4822-4827.

83. Felsher DW, Bishop JM. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. 1999. Proc Natl Acad Sci USA, 96(7):3940-3944.

84. Neuveut C, Jeang KT. HTLV-I Tax and cell cycle progression. 2000. Prog Cell Cycle Res, 4:157-162.

85. Laman H, Coverley D, Krude T, Laskey R, Jones N. Viral cyclin-cyclin-dependent kinase 6 complexes initiate nuclear DNA replication. 2001. Mol Cell Biol, 21(2):624-635.

86. Tsao YP, Li LY, Tsai TC, Chen SL. Human papillomavirus type 11 and 16 E5 represses p21(WafI/SdiI/CipI) gene expression in fibroblasts and keratinocytes. 1996. J Virol, 70(11):7535-7539.

87. Wade M, Allday MJ. Epstein-Barr virus suppresses a G(2)/M checkpoint activated by genotoxins. 2000. Mol Cell Biol, 20(4):1344-1360.

88. Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD, Howley PM. Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. 2000. EMBO J, 19(21):5762-5771.

89. Lin CS, Kuo HH, Chen JY, Yang CS, Wang WB. Epstein-barr virus nuclear antigen 2 retards cell growth, induces p21(WAF1) expression, and modulates p53 activity post-translationally. 2000. J Mol Biol, 303(1):7-23.


Написать комментарий
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования