Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Обратите внимание!
 
  Наука >> Биология >> Клеточная биология | Обзорные статьи
 Написать комментарий  Добавить новое сообщение

Хондриом - совокупность митохондрий клетки
Ю.С.ЧЕНЦОВ
Московский государственный университет им. М.В. Ломоносова

ВВЕДЕНИЕ
Как известно, митохондрии являются структурами, которые осуществляют синтез аденозинтрифосфорной кислоты (АТФ) - основной энергетической единицы всего царства живого. Обычно митохондрии представляют собой мелкие (длиной 0,5-3 мкм) внутриклеточные образования, располагающиеся в местах, где необходимо использование энергии для любых жизненных процессов. Возник вопрос, каким образом транспортируется в клетке энергия - путем ли диффузии АТФ и нет ли в клетках структур, исполняющих роль электрических проводников, которые могли бы энергетически объединять отдаленные друг от друга участки клетки.
Гипотеза заключается в том, что разность потенциалов в определенной области мембраны митохондрий передается вдоль нее и превращается в работу в другой области той же мембраны [1]. Как представлялось, подходящими кандидатами на эту же роль могли быть мембраны самих митохондрий. Кроме того, исследователей интересовали взаимодействие в клетке множественных митохондрий друг с другом, работа всего ансамбля митохондрий, всего хондриома - совокупности всех митохондрий.

МИТОХОНДРИИ - СТРОЕНИЕ И ФУНКЦИИ
Митохондрии - органеллы синтеза АТФ - характерны за малым исключением для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки. Митохондрии или хондриосомы (от греч. mitos - нить, chondrion - зернышко, soma - тельце) представляют собой гранулярные или нитевидные органоиды (рис. 1, а).
Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. В живых клетках митохондрии могут двигаться, перемещаться, сливаться друг с другом. Особенно хорошо митохондрии выявляются на препаратах, окрашенных различными способами. Размеры митохондрий непостоянны у разных видов, так же как изменчива их форма. Все же у большинства клеток толщина этих структур относительно постоянна (около 0,5 мкм), а длина колеблется, достигая у нитчатых форм 7-60 мкм.

Рис. 1. Строение и работа митохондрий: а - митохондрии (указаны стрелкой), видимые в световом микроскопе; б - ультраструктура митохондрий: 1 - митохондриальный матрикс, 2 - внутренняя митохондриальная мембрана, 3 - межмембранное пространство, 4 - внешняя митохондриальная мембрана; в - общая схема функционирования митохондрий: при переносе электронов в цепи окисления в межмембранном пространстве накапливаются протоны и при достижении определенного потенциала возвращаются в матрикс; энергия этого потенциала тратится на синтез АТФ

Митохондрии независимо от их величины и формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами (рис. 1, б ). Наружная митохондриальная мембрана отделяет ее от остальной цитоплазмы. Ее толщина около 7 нм, она не бывает связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружную мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии, ее матрикс или митоплазму. Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные выпячивания внутрь митохондрий. Такие выпячивания (кристы) чаще всего имеют вид плоских гребней.
Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ. В клетках процессы окисления и выделения энергии, освобождающейся в результате этого процесса, проходят в несколько взаимосвязанных этапов. При этом в качестве начальных субстратов используются различные углеводы, жирные кислоты, аминокислоты. Начальные этапы окисления углеводов происходят в гиалоплазме и не требуют участия кислорода. Поэтому они называются анаэробным окислением, или гликолизом. В процессе гликолиза происходит неполное окисление субстрата. Так, например, глюкоза распадается до триоз, при этом тратятся две молекулы АТФ и синтезируются четыре молекулы АТФ. Так что в конечном результате клетка "зарабатывает" всего две молекулы АТФ. Образовавшиеся в результате гликолиза триозы, и в первую очередь пировиноградная кислота, вовлекаются в дальнейшее окисление, происходящее уже в самих митохондриях. При этом используется энергия расщепления всех химических связей, что приводит к выделению CO2 , потреблению кислорода и синтезу большого количества АТФ. Эти процессы связаны с окислительным циклом трикарбоновых кислот и дыхательной цепью переноса электронов, где происходят фосфорилирование АДФ и синтез клеточного "топлива" - молекул АТФ. В цикле трикарбоновых кислот электроны, освободившиеся при окислении, переносятся на акцепторные молекулы коферментов (НАД - никотинамид адениндинуклеотид), которые вовлекают их далее в цепь переноса электронов (ЭТЦ - электронтранспортную цепь). Эти события внутри митохондрий происходят в их матриксе. Остальные реакции, связанные с дальнейшим переносом электронов и синтезом АТФ, связаны с внутренней митохондриальной мембраной, с кристами митохондрий. Освободившиеся в процессе окисления в цикле трикарбоновых кислот электроны, акцептированные на коферментах, переносятся затем в дыхательную цепь (цепь переноса электронов), где они соединяются с молекулярным кислородом, образуя молекулы воды. Дыхательная цепь представляет собой ряд белковых комплексов, встроенных во внутреннюю митохондриальную мембрану, и является главной системой превращения энергии в митохондриях. Здесь происходят последовательное окисление и восстановление элементов дыхательной цепи, в результате чего высвобождается небольшими порциями энергия. За счет этой энергии в трех точках цепи из АДФ и фосфата образуется АТФ. Поэтому говорят, что окисление (перенос электронов) сопряжено с фосфорилированием (АДФ + Фн АТФ), то есть происходит процесс окислительного фосфорилирования.
При переносе электронов в митохондриальной мембране каждый комплекс дыхательной цепи направляет свободную энергию окисления на перемещение протонов (положительных зарядов) через мембрану, из матрикса в межмембранное пространство, что приводит к образованию разности потенциалов на мембране: положительные заряды преобладают в межмембранном пространстве, а отрицательные - со стороны матрикса митохондрий. При достижении определенной разности потенциалов (220 мВ) белковый комплекс АТФ-синтетазы начинает транспортировать протоны обратно в матрикс, при этом превращает одну форму энергии в другую: образует АТФ из АДФ и неорганического фосфата. Так происходит сопряжение окислительных процессов с синтетическим - с фосфорилированием АДФ. Пока происходит окисление субстратов, пока происходит перекачка протонов через внутреннюю митохондриальную мембрану - идет сопряженный с этим синтез АТФ, то есть окислительное фосфорилирование (рис. 1, в).
Так работает отдельно взятая митохондрия. Возникает вопрос, как же в клетке работают все митохондрии в их совокупности, происходят ли какое-либо их объединение или специализация митохондрий для обеспечения синтеза АТФ в различных, иногда далеко отстающих друг от друга участков клетки. Другими словами, каковы взаимные связи митохондрий в клеточном хондриоме.

Далее...


Написать комментарий
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования